Energy Minimizing Active Models in Artificial Vision
نویسندگان
چکیده
Deformable models are well known examples of artificially intelligent system (AIS). They have played an important role in the challenging problem of extracting useful information about regions and areas of interest (ROIs) imaged through different modalities. The challenge is also in extracting boundary elements belonging to the same ROI and integrate them into a coherent and consistent model of the structure. Traditional low-level image processing techniques that consider only local information can make incorrect assumptions during this integration process and generate unfeasible object boundaries. To solve this problem, deformable models were introduced (Ivins, 1994), (McInerney, 1996), (Wang, 2000). These AI models are currently important tools in many scientific disciplines and engineering applications (Duncan, 2000). Deformable models offer a powerful approach to accommodate the significant variability of structures within a ROI over time and across different individuals. Therefore, they are able to segment, match and track images of structures by exploiting (bottom-up) constraints derived from the image data together with (top-down) a priori knowledge about the location, size, and shape of these structures. The mathematical foundations of deformable models represent the confluence of geometry, physics and approximation theory. Geometry serves to represent object shape, physics imposes constraints on how the shape may vary over space and time, and optimal approximation theory provides the formal mechanisms for fitting the models to data. The physical interpretation views deformable models as elastic bodies which respond to applied force and constraints.
منابع مشابه
Using Dynamic Programming for Solving Variational Problems in Vision
Variational approaches have been proposed for solving many inverse problems in early vision, such as in the computation of optical flow, shape from shading, and energy-minimizing active contour models. In general however, variational approaches do not guarantee global optimality of the solution, require estimates of higher order derivatives of the discrete data, and do not allow direct and natu...
متن کاملDesign, Development and Evaluation of an Orange Sorter Based on Machine Vision and Artificial Neural Network Techniques
ABSTRACT- The high production of orange fruit in Iran calls for quality sorting of this product as a requirement for entering global markets. This study was devoted to the development of an automatic fruit sorter based on size. The hardware consisted of two units. An image acquisition apparatus equipped with a camera, a robotic arm and controller circuits. The second unit consisted of a robotic...
متن کاملRobot Motion Vision Pait I: Theory
A direct method called fixation is introduced for solving the general motion vision problem, arbitrary motion relative to an arbitrary environment. This method results in a linear constraint equation which explicitly expresses the rotational velocity in terms of the translational velocity. The combination of this constraint equation with the Brightness-Change Constraint Equation solves the gene...
متن کاملActive Contour Models
Active contour models have been widely applied to image segmentation and analysis. It has been successfully used in contour detection for object recognition, computer vision, computer graphics, and biomedical image processing such as X-ray, MRI and Ultrasound images. The energy-minimizing active contour models or snakes were developed by Kass, Witkin and Terzopoulos in 1987. Snakes are curves d...
متن کاملRobot Motion Vision Part II: Implementation
The idea of Fixation introduced a direct method for general recovery of shape and motion from images without using either feature correspondence or optical flow [1,2]. There are some parameters which have important effects on the performance of fixation method. However, the theory of fixation does not say anything about the autonomous and correct choice of those parameters. This paper presents ...
متن کاملNEW OPTIMIZED EQUATIONS WITH INTELLIGENT MODELS FOR PREDICTING HYDRAULIC JUMP CHARACTERISTICS OVER ARTIFICIAL AND NATURAL ROUGH BEDS
The available studies for estimating the characteristics of hydraulic jump are only for artificial or natural beds, and very limited researches have simultaneously considered artificial and natural beds. The aim of this study is to present comprehensive equations and models for predicting the characteristics of hydraulic jump in artificial and natural rough beds with various dimensions, arrange...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009